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Supervisory Control
of Manufacturing Systems

The focus of this chapter is the autonomous supervisory control of part flow
within networked flexible manufacturing systems (FMSs). In manufacturing
industries that employ FMSs, automation has significantly evolved since the
introduction of computers onto factory floors. Today, in extensively net-
worked environments, computers play the role of planners as well as that of
high-level controllers. The preferred network architecture is a hierarchical
one: in the context of production control, a hierarchical network of com-
puters (distributed on the factory floor) have complete centralized control
over the sets of devices within their domain, while receiving operational
instructions from a computer placed above them in the hierarchical tree.

In a typical large manufacturing enterprise, there may be a number of
FMSs, each comprising, in turn, a number of flexible manufacturing work-
cells (FMCs) (Fig. 1). These FMCs will be connected via (intercell) material
handling systems such as automated guided vehicles (AGVs) and conveyors
(Chap. 12).

FMCs have been, commonly configured for the fabrication and/or
assembly of families of parts with similar processing requirements. A
traditional FMC comprises a set of programmable manufacturing devices
with their own controllers that are networked to the FMC’s host computer
for the downloading of production instructions (programs) as well as to a
supervisory controller for the autonomous control of parts flow (Fig. 2).
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FIGURE 1 A networked manufacturing environment.

FIGURE 2 A flexible manufacturing workcell.

Chapter 15510

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Although human operators have been traditionally used in the past
century in the traffic control of part movements on the factory floor,
personal computers (PCs) and programmable logic controllers (PLCs) have
been replacing them since the early 1980s at a rapid pace. Such autonomous
traffic controllers can be programmed with high-level instructions to make
(correct) decisions in fractions of a second and communicate these de-
cisions to the individual FMC devices with no delays. In turn, these devices
can carry out their expected tasks as preprogrammed in their respec-
tive controllers, which will have been downloaded a priori or on-line from
the host PC of the FMC. An FMC ‘‘supervisor’’ initiates/terminates de-
vice operations, though it does not interfere with the accomplishment of
these tasks.

In contrast to time-driven (continuous variable) control of the indi-
vidual devices in an FMC, the supervisory control of the FMC is event
driven. The future actions of the FMC are solely dependent on the past
events, as opposed to being clock driven. Thus manufacturing systems can
be considered as discrete event systems (DESs) from a supervisory control
perspective. DESs (also known as discrete event dynamic systems, DEDSs)
evolve according to the (unpredictable) occurrence of events that are
instantaneous, asynchronous, and nondeterministic.

The state of a DES changes in a deterministic manner based on the
physical event that has just been observed, but the system overall is
nondeterministic, since in any one state there may be several possible
routes of actions (‘‘enabled’’ events) that can take place. Nondeterminism
implies that we may not know a priori which event (among the several
possible) will take place, though once observed, this event can lead to only
one future state of the DES (i.e., deterministic transition). For example,
when a machine is working (state=Working), it may either complete its
operation (event=Task completion) or break down (event=Failure), we
do not know in advance which one will happen. However, we do know
that the former will take the machine to its ‘‘Idle’’ state and the latter will
take the machine to its ‘‘Down’’ state.

There exist three interested parties to this practical and very impor-
tant manufacturing problem: users, industrial controller developers, and
vendors and academic researchers. The users (customers) have been always
interested in controllers that will improve productivity and impose minimal
restrictions. Effective (supervisory) controllers are necessary for them to im-
plement existing flexible manufacturing strategies. Industrial controller
vendors have almost exclusively relied on the marketing of PLCs in the
past two decades in response to the control needs of FMSs. Their efforts
have largely concentrated on hardware improvements and better user
interfaces, though continuously lagging behind developments by the PC
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industry by several years. The programming of PLCs must still be carried
out in ad hoc manner (versus mathematical formalism), and thus it is prone
to human error.

The academic community has spent the past two decades developing
very effective formal control theories that are suitable for the supervisory
control of manufacturing systems. Control strategies determined by invok-
ing any one of these theories can be software coded and downloaded onto a
PC or PLC for real-time (DES) control of limited-size FMCs. Naturally,
although the successful control of such manufacturing systems have been
shown in academic laboratory settings, appropriate software tools must be
developed by current industrial controller developers/vendors prior to their
adoption by the users (i.e., the manufacturing industry).

In this chapter, we will address two of the most successful DES con-
trol theories developed by the academic community: Ramadge–Wonham
automata theory and Petri-nets theory. As proposed in Fig. 3, it is expected

FIGURE 3 Software architecture for FMC control.
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that in the future industrial users will employ such formal DES control
theories in the supervisory control of their FMCs. The description of PLCs,
used for the autonomous DES-based supervisory control of parts flow in
FMCs, concludes this chapter. In Fig. 3 the term ladder logic refers to the
programming language used by most current PLC vendors.

15.1 AUTOMATA THEORY FOR DISCRETE EVENT
SYSTEM MODELING

Automata theory generally refers to the study of the dynamic behavior
of information systems that can be described by a finite number of
states and with discrete inputs and outputs. Although our focus in this
chapter is on manufacturing systems, the field of automata theory was
originally developed in response to the needs of computer science. It is
of interest to note, however, that the first published work in the field of
finite-state systems (‘‘machines’’) by A. M. Turing in 1936 preceded all
(digital) computers.

Significant advancements in the field of automata were reported in
the 1950s and the early 1960s in the works of N. Chomsky, G. H. Mealy,
and E. F. Moore. The application of automata theory to the supervisory
control of manufacturing systems, though, was made possible only after
the pioneering works of P. J. G. Ramadge and W. M. Wonham in the late
1980s (today known as the R–W theory). Thus, in this section, following a
brief background review on the theories of languages and automata, we
will present an overall description of the R–W theory.

15.1.1 Formal Languages and Finite Automata

Automata theory deals with systems whose dynamics is dependent on the
occurrence of events that cause the system to change its state. Abstract
algebra is an essential tool in the modeling and analysis of such DESs, in
contrast to the use of differential calculus in time-varying systems.

Sets: A set is a collection of elements with a common property:

S ¼ fs j s has property Pg or saS

Most common operations on sets include

Union (sum): A [ B ¼ fa j aaA or b j baBg:
Intersection: A \ B ¼ fa j aaA and b j baBg:
Cartesian product: A� B ¼ fða; bÞ j aaA; baBg:
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For example, let A ={a, b} and B = {c, d}, then

A [ B ¼ f�; b; c; dg A \ B ¼ /

A� B ¼ fð�; cÞ; ða; dÞ; ðb; cÞ; ðb; dÞg:
(The elements of A�B are termed as ‘‘ordered pairs’’).

Mapping: f: A!B; the function, f, maps the elements of A into B.

For example

f ð�Þ ¼ d and f ðbÞ ¼ c �aA and daB:

Combinational logic: Logic elements can be used to perform logical
operations on multiple inputs in order to yield a desired output. In binary-
valued logic, the two most commonly used operations are AND and OR:

The ‘‘not’’ operation, also known as the complementation, negates the
value of the output (0 to 1, or 1 to 0). Although the above table only shows
two input variables for clarity of discussion, there may be multiple input
variables (z 2), on which the logical operations would be applied in the
same manner.

Languages: In a DES, the set of all possible events can be considered
as the alphabet, E, from which sequences of events, strings or words, can be
generated. An (artificial) language is a collection set of strings (events). For
example, for E = {�, b, c, d}, a language could be L = {�b, �cd}.

Finite automata: A finite automaton comprises a finite set of states and
a set of transitions (events) that occur according to the alphabet of the DES.
Finite automata are also known in the literature as finite-state machines
describing the dynamics of sequential machines (i.e., DESs). Automata are
also considered as generators of languages according to well-defined rules.
Formally, a finite-state automaton (FA) is defined by a quintuple,

FA ¼ ðS; E; f ; s0; FÞ

Input Output, y

x1 x2 AND OR
NAND

(not AND)
NOR

(not OR)
Exclusive

OR

0 0 0 0 1 1 0
0 1 0 1 1 0 1
1 0 0 1 1 0 1
1 1 1 1 0 0 0
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where S is a finite (nonempty) set of states, E is a finite (input) alphabet
(events), f is a state-transition (mapping) function, f: S�E ! S, s0 is the
initial state, s0 aS, and F is the set of final states, F p S.

For example, let us consider the finite automaton, M, shown in Fig. 4,
where S = {s0, s1, s2}, E = {0, 1}, F = {s0} and

f ðs0; 1Þ ¼ s2 f ðs1; 1Þ ¼ s0 f ðs2; 1Þ ¼ s1

f ðs0; 0Þ ¼ s1 f ðs1; 0Þ ¼ s2 f ðs2; 0Þ ¼ s0

In Fig. 4, the initial state is marked by an arrow labeled ‘‘start’’ and
the final state is marked by two concentric circles. An input sequence
(string) of w = 000 into M would yield the state s0, w = 00100 would also
yield s0, etc.

A string w is said to be ‘‘accepted’’ by a FA, if f (s0, w) = p, where
paF. The language accepted by the FA, L(FA), is the set of all (accepted)
strings satisfying this condition.

There exist two common finite-state machines with user-specified
outputs at all of their states: Moore and Mealy machines. In Moore
machines, the output at a specific state is defined regardless of how that
state has been reached, while in Mealy machines, the output is dependent on
the state as well as how it has been reached (i.e., the specific input transition
to this state). Typical Moore and Mealy machines are given in Fig. 5a and
Fig. 5b, respectively.

FIGURE 4 A finite-state automaton.

Supervisory Control of Manufacturing Systems 515

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



Formally, both Mealy and Moore machines are defined by a sextuple,

M ¼ ðS; E; O; f ; g; s0Þ
where S is a finite set of states, E is a finite input alphabet, O is a finite output
alphabet, f is a state-transition function, g is output (mapping) function and
s0 is the initial state. In Mealy machines g is a function of the input as well,
g(s,e), eaE. For example, in Fig. 5b, g(s0,1) = 0, g(s0,0) = 1, g(s1,1) = 1, etc.
Thus an input sequence of w=0011 would yield an output of 1 in the Moore
machine, while it would yield an output of 0 in the Mealy machine.

15.1.2 Ramadge–Wonham Supervisory Control Theory

Supervisory control of a DES, in the context of finite-state automata theory,
can loosely be defined as the enablement (or disablement) of events at the
latest reached state of the system. That is, a supervisor (a finite-state
automaton) changes its state according to the latest event observed within
the DES and informs the (controlled) DES what future events are enabled
(or disabled). (Fig. 6). Naturally, only a subset of all events (defined in the
alphabet, E) are controllable and only they can be enabled/disabled. For
example, the start of an operation is a controllable event, whereas a
breakdown event is uncontrollable by the supervisor.

The Ramadge–Wonham (R–W) controlled automata theory allows
users to synthesize supervisors that are correct by construction. That is,
all the system states within the supervisor are reachable through a

FIGURE 5 (a) A typical Moore machine; (b) a typical Mealy machine.

Chapter 15516

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



sequence of events (strings) included in the (‘‘supremal-controllable’’)
language of the automaton—a deadlock-free controller. Prior to the de-
scription of the controller synthesis process, the fundamentals of R–W
(DES modeling) theory will be briefly described here. For consistency
with the existing literature, the nomenclature introduced by Ramadge and
Wonham will be utilized.

The R–W finite-state automaton, G, is defined by a quintuple,

G ¼ ðQ; A; d; q0; QmÞ
where Q is the finite set of states, A is the finite alphabet of events, d: Q � A
! Q is the (one-to-one mapping) function defining the transition between
states according to observed events, q0 is the initial state, q0aQ, and QmpQ
is a subset of marker (completed task) states. A transition event is formally
defined as a triple ( q, j, qV), where d(j,q) = qV, for jaR and q, qVaQ.

The alphabet of events, A, is further partitioned into two disjoint
subsets of controllable, Ac, and uncontrollable, Au, subsets, where Aĉ[Aû. In
an automaton, controllable events can be enabled (shown by a ‘‘tick’’ across
the transition line in a directed graph), while uncontrollable events can be
observed but not enabled or disabled. Fig. 7 illustrates a model of a machine
with three states (idle, I, working, W, down, D) and four events (start to
operate, �; finish, b; breakdown, k; get repaired, l), of which the breakdown
and finish events are not controllable.

An automaton, G, is said to be nonblocking (deadlock free) if the
language L(M) includes the marked language accepted by M. The marked
language, Lm, includes all strings that commence and terminate at the
automaton’s marker states (e.g., state I in Fig. 7). If the language, L,
includes a string that leads to a nonmarker state with no controllable or
uncontrollable event exiting it, then the DES is deadlocked at this state.
Such (deadlock) states are labeled as not reachable and/or coreachable in
R–W theory.

FIGURE 6 Supervisory control of a DES.
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The synthesis of a (controllable) supervisor is a two-step procedure:
first, all the automata representing the individual machines of a DES are
combined into one overall (uncontrolled) system automaton through a
‘‘shuffle’’ operation, while in parallel all automata representing the control
specifications of this system are combined through a ‘‘meet’’ operation
into one overall specifications automaton; second, the intersection of the
languages of these two (system and specification) automata is obtained
through a meet operation to determine the supremal- controllable lan-
guage of the supervisor. This procedure is illustrated below through a
simple manufacturing workcell example—two machines with a buffer of
capacity one in between:

Shuffle operation: The shuffle operation (also known as the synchro-
nous product) of two languages, L1||L2, yields a language comprising all
possible interleavings of the strings of L1 with those of L2. The shuffled
automaton of two machines, shown in Fig. 7, is given in Fig. 8. All shown
system states (II, WI, DI, etc.) refer to the individual states of the two
machines. For example, IW implies that the first machine, M1, is idle, while
M2 is working. The indices of the events correspond to the machine
numbers, i = 1, 2.

Meet operation: The meet operation applied on two languages yields
their intersection, namely, a language comprising all the strings accepted by
both their automata, L= L(G1) \ L(G2). As an example, the meet operation
is applied herein on the (uncontrolled) system automaton shown in Fig. 8
and the control specification automaton shown in Fig. 9. This workcell
specification does not allow M1 to start operating unless the buffer, B, is
already empty (preventing overflow) and does not allow M2 to start
operating unless the buffer contains a part that can be drawn by M1

FIGURE 7 A (finite-state) automaton model for a machine.
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(preventing underflow). The resulting controllable supervisor for the specific
M1—B—M2 DES is given in Fig. 10.

As shown in Fig. 10, the finite-state automaton (supervisor) of the
overall manufacturing workcell, SUP, has 12 states and 25 transitions.
The supervisor is nonblocking (deadlock-free) by construction. It enables
controllable events and changes states by the observation of both control-
lable and uncontrollable events. A system state (label) in Fig. 10 is the

FIGURE 9 A control specification automaton, B.

FIGURE 8 A shuffled automaton.
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concatenation of the individual states of the devices. For example, IEI
refers to the machines, M1 and M2, being idle and the buffer, B, being
empty.

15.2 PETRI NETS

Petri nets (PNs) provide engineers with a mathematical formalism for the
modeling and analysis of DESs, such as manufacturing systems. They
provide a simpler alternative to automata theory for the graphical repre-
sentation of parts flow in a manufacturing system in terms of (system) states
and transitions (events). (This graphical representation can be expressed by
a set of linear algebraic equations.) However, the academic community has
yet to illustrate clearly whether the formalism of PNs is superior to that of
automata theory. In this section, we will only discuss the fundamentals of
PNs and refrain from declaring a winner.

PNs were originally developed in the late 1950s and early 1960s by
C. A. Petri. Petri’s Ph.D. dissertation on the use of automata for the
modeling and analysis of communications (events) within computer systems
was published in 1962 in the Federal Republic of Germany. The use of PNs
in manufacturing system modeling, however, started only in the early 1980s,

FIGURE 10 Supervisor, SUP, automaton.
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coinciding with the start of the widespread use of computers in manufactur-
ing planning and control activities.

Since the 1980s, significant advancements have been reported by the
academic community in the use of PNs for queuing simulations (perform-
ance analysis), scheduling, and supervisory control of manufacturing sys-
tems using ordinary (event-based) PNs, timed PNs (stochastic or
deterministic), and ‘‘colored’’ PNs, where colors (differentiators) are used
for the modeling of a number of different parts within a PN. However,
except for an isolated success in developing a PN-based programming
language (GRAFCET) for sequential logic controllers, the implementation
of PNs in industrial manufacturing environments has been sparse.

Our focus in this book will be on the modeling of manufacturing
systems using deterministic (versus stochastic), nontime (versus timed),
ordinary (versus colored) PNs. Furthermore, the emphasis will be on the
potential use of PNs for the supervisory control of manufacturing systems
(versus their performance evaluation).

15.2.1 Discrete Event System Modeling with Petri Nets

PNs allow engineers to model asynchronous (event-driven) manufacturing
systems, with concurrent operations and shared resources, by formalizing
precedence relations. A PN is a directed bipartite graph comprising nodes,
places, and transitions joined by directed arcs. Places (states) are represented
by circles and transitions (events) by bars/rectangles.

The dynamics of a PN is achieved by tokens that are moved from one
place to another by a transition connecting them. A transition can be
weighted to transfer multiple tokens at one instance. (For example, a
transition can cause two tokens to leave a place, but arrive at the next
place as only one token.) The marking of a PN is an n-component vectorial
representation of the number of tokens stored in each of its places. An
example PN with its initial marking, m0̂= (3,1,1), is shown in Fig. 11. For
ordinary PNs all the weights are equal to 1.

Formally, a marked PN can be represented by a quintuple,

PN ¼ fP; T ; I ; O; m0g
where P = ( p1, p2,. . ., pn) is a finite set of places, T = (t1, t2,. . ., tp) is a
finite set of transitions, I is an input function representing all directed arcs
from P to T, P � T, O is an output function representing all directed arcs
from T to P, T � P, and m0 is the initial marking. Both I and O can be
expressed as (incidence) matrices, whose elements are 0 or 1 for ordinary
PNs representing the absence or presence of a joining arc, respectively.
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A transition t is enabled if all places connected to it by input arcs
contain tokens in numbers equal to or greater than the weights attached to
the arcs. An event within the modeled system causes the corresponding
transition to ‘‘fire.’’ A fired transition causes transfer of tokens between
places according to the specific weights. For example, in Fig. 11, the firing of
transition t1 yields the following marking: m1=(1,2,3). A sequence of
transitions, for example, j = ht1, t2, t3, t1X, takes the same PN from its
initial marking m0 = (3,1,1) to m4 = (2,1,2).

A transition without an input place is called a source and is always
enabled. Similarly, a transition without an output place is called a sink that
can be fired for the pure removal of tokens from the PN when enabled (Fig.
12). A self-loop is a circular representation of one place and one transition
connected by an input as well as an output arc (Fig. 12). For example, a self-
loop used in the modeling of a production machine would not allow the
start of a new operation until the current operation is concluded.

Properties of PN Models

The properties of PNs can be classified as behavioral and structural. The
former depend on the structure and the initial marking of the PN, while the
latter depend only on the structure of the PN. Here we review several PN
properties pertinent to manufacturing systems.

Reachability: A PN marking, mk, (i.e., a specific system state) is said
to be reachable if there exists a sequence of transitions, j, that leads from
m0 to mk. The (behavioral) reachability property of a PN can be analyzed
by generating the corresponding reachability tree/graph, starting from the
initial marking, m0. In order to limit the size of the tree, markings (states),

FIGURE 11 A marked Petri net.
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reached by (random) firing of transitions (events), that have already been
noted as an earlier-encountered node on the tree branch from m0, are
labeled as old. No further transitions are fired from old markings. This
elimination of duplicate markings result in a more compact coverability
tree, which is equivalent to the reachability tree. In generating a reach-
ability/coverability tree, one must note that a PN’s marking can be
changed by the simultaneous firing of multiple enabled transitions, as
opposed to sequential firing.

Boundedness: Given the reachability set of all possible markings, a
place, pi, is l-bounded if it receives a maximum number of l tokens. The
number l may or may not need to be a function of the initial marking. In
manufacturing applications, boundedness can define the necessary capacity
of a buffer or show its overflow. If the place examined is a machine, the term
safeness is used to indicate a boundedness of l=1, (i.e., only one operation
at a time is allowed on that machine).

Liveness: A transition, t, is live if at any marking defined by the
reachability tree there exits a sequence of subsequent transitions, j, whose
firing will lead to a marking that will reenable it. The PN is live as a whole if
all of its transitions are live, i.e., the system is free of deadlock. A transition,
t, is dead at a specific marking (also called dead marking) if there exits no
subsequent sequence of transitions, j, that will reenable it. A PN may have
multiple dead markings, i.e., deadlock states. In the most common deadlock
situations, called circular waiting, two or more processes, arranged in a
circular closed-loop chain, each wait for resource availability next in the

FIGURE 12 An example of an ordinary PN with a self-loop (all weights are 1 and
thus not shown).

Supervisory Control of Manufacturing Systems 523

Copyright © 2003 by Marcel Dekker, Inc. All Rights Reserved.



chain. A possible solution to such a practical problem is the utilization of
buffers with sufficient storage capacity.

15.2.2 Synthesis of Petri Nets

The modeling of multiresource DESs, such as manufacturing workcells,
can be carried out either by modeling the system as a whole or by
modeling the individual resources first and then connecting them using a
synthesis method. There are two primary PN synthesis methods: bottom-up
and top-down.

A typical bottom-up approach would connect (live and bounded)
multiple individual PNs into a larger system PN by merging common places
into a new place. An alternative bottom-up approach would connect simple
elementary paths shared by the individual PNs: for example, merging
common paths terminated on both ends by a transition or by a place. A
PN for a manufacturing line that comprises two machines (prone to failure),
M1 and M2, and a buffer of size 1, B, that are combined in an M1—B—M2

configuration, whose PNs are given in Fig. 13, can be synthesized using a
bottom-up approach as shown in Fig. 14.

In Figs. 13a and 13b, the PN model of the machine allows it to work if
the machine was previously idle and a part is available (e.g., placed on its
worktable). Once working, the machine can either finish its operation or
break down. The machine returns to its idle state and the finished part is
made available for the next resource/buffer/etc. after the machine is finished
working. The reachability tree for such a machine model is given in Fig. 15.
[As one can note, an external transition, te, making a part available to the
machines (i.e., supplying a token to p1 or p5, respectively) is not included in
the tree. Such a transition could happen only once the finished part is
removed form the machine.]

FIGURE 13 (a) PN model for M1; (b) PN model for M2; (c) PN model for B.
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In top-down synthesis techniques, the overall PN is developed in a
gradual manner by (stepwise) refinement of places or transitions on an
existing in-process PN model. That is, a more detailed submodel is inserted
into the latest PN at hand as a block to replace a transition or a place.
Unlike the bottom-up synthesis approaches, which provide users with
flexible tools for the modular construction of large PNs, the top-down
methods are more suitable for the minor refinement of already existing PNs,
for example, the replacement of a resource or an operation.

FIGURE 14 A PN for a M1—B—M2 manufacturing line.

FIGURE 15 Reachability tree for M1.
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In regard to behavioral properties, although most synthesis methods
(bottom-up or top-down) are expected to preserve liveness and bounded-
ness, in practice it would be advisable to reexamine the properties of the
resultant synthesized PN.

15.2.3 Supervisory Control Using Petri Nets

PNs have evolved since the early 1980s to cope with a variety of manu-
facturing constraints, such as modeling the flow of several different part
types through the manufacturing system, sharing of resources, and so on.
Although the primary utilization area of PNs has been in the simulation of
manufacturing systems for performance analysis, there have also been
supervisory control cases: for example, (1) the direct implementation of
PNs through the use of a companion execution software and (2) the
translation of PNs into sequential programming codes that can be imple-
mented on a PLC or on an industrial PC with external I/O capability. The
former method has also been known as playing the token game, i.e., keeping
track of the locations of tokens in a PN as new transitions (events) occur in
the corresponding physical system.

As one can infer, the synthesis of overall system PNs by combining the
sub-PNs of their individual resources would yield very large nets, where
places refer to the individual states of the resources as opposed to the overall
state of the system, as would be the case with Ramadge–Wonham’s super-
visory control theory (Sec. 15.1.2). Thus, in any token game, one must keep
track and examine all pertinent places for token movements. Transitions
should be enabled based on firing rules, and such information must be
effectively transmitted to individual device controllers. In PC-based control,
the receipt of input signals from the manufacturing system, in regard to the
actual occurrence of events, and the sending of output signals, in regard to
the enablement of events, can only be achieved via multichannel I/O
interface cards.

Among the efforts for generating a sequential programming code
based on PNs, the work of a group of French academics and industrial
participants in the mid 1970s stands out as unique. This programming
standard, officially established in 1980, is today known as GRAFCET
(graphe de commande étape transition). GRAFCET is a graphical pro-
gramming tool directly derived from ordinary PNs for implementation on
PLCs. The basic elements of GRAFCET are steps (places with capacity 1),
transitions, and receptivities (logical conditions that need to be satisfied
before a transition can fire). Directed arcs connect transitions and steps. The
dynamics of the GRAFCET (net) is achieved by enabling transitions, whose
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input steps satisfy the firing rules (i.e., have tokens in them), when the
associated receptivities are true. A receptivity, R, may be an (external) event
or a logic condition, or a combination of both. An example GRAFCET
(net) is shown in Fig. 16.

As will be further discussed in subsection 15.3.2, PNs in general and
GRAFCET in particular have led to the development of several industrial
standards for PLC programming. The primary reason for this close relation-
ship has been the similarities between PLC ladder logic coding and PNs in
programming sequential systems via the use of logical expressions (AND,
OR, NOR, etc.) that can be easily expressed in graphical form.

15.3 PROGRAMMABLE LOGIC CONTROLLERS

A PLC is a sequential controller that ensures (allows) the occurrence of
events in a programmed sequence, through its output unit, based on
feedback it receives from the system it is controlling, through its input unit.
A control program stored in the memory of the PLC is continuously
scanned (run in an endless loop) while examining all the inputs and
‘‘energizing’’ appropriate output ports (Fig. 17).

The first commercial PLC was developed and installed in 1969 at
General Motors Hydra-Matic division by Modicon (Gould Electronics).
The primary objective from GM’s perspective was rapid retooling needed by
product model changes. Electromechanical relays used on the factory floor
to control the flow of parts prevented such rapid retooling owing to

FIGURE 16 A GRAFCET example.
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extensive (and expensive) rewiring. Thus GM engineers set the following
specifications for the design of a sequential event controller:

Ease of on-the-floor reprogrammability
Modularity and ease of interface to factory devices
Ruggedness and cost effectiveness

All the above specifications were met by the original PLC designs, and
their use became very widespread with the introduction of Intel’s processors.
Today the market for commercial PLCs is several billions of (US) dollars.

PLCs have long been accepted as industrial computers with efficient
input/output (I/O) interface capability, and they competed successfully as an
alternative to the use of PCs as process controllers. Recent advances in PLC
technologies blur the differences even more in favor of PLCs. Today, PLCs,
like PCs, can be networked (via Ethernet) to other remote PLCs and PCs,
execute multiple programs (using coprocessors), communicate in digital and
analog format, with a very large number of machines, and so on. Their
modular structure also allows them efficient expandability to handle thou-
sands of inputs and outputs, while in mini-PLC configuration (up to 24-32 I/
O ports) they can be purchased for $100 to $150 (USA). PLCs’ current
primary weakness is their expected programmability using a low-level,
device-specific language (i.e., lack of programmability by a high-level
language) and difficulty of creating large programs that are verifiable, for
example, for deadlocks.

15.3.1 PLC Hardware Structure

A PLC is an industrial computing device that continuously and sequentially
checks its input ports to determine the most recent events that have
occurred within the system it is controlling, and it activates (or deactivates)
its output ports to allow (or disallow) other events to happen within the
system (Fig. 17). The core unit of the PLC, as with any other computing

FIGURE 17 A typical PLC structure.
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device, is the central processing unit (CPU). The CPU controls all the
operations within the PLC based on instructions specified by the user in
the form of a program stored in its memory. The CPU communicates with
the data- and program-memory modules and I/O units through the various
(address, data, control) buses, according to its clock frequency (Fig. 18).
Although CPU units used in PCs today can have a clock speed of above 2
GHz, most PLCs still use CPU units that are a few generations old (e.g.,
Intel’s 80486) with clock speeds that are less than 200 MHz.

I/O System

The I/O system of a PLC is its interface (physical connection) to the entity it is
controlling. The majority of input signals are received from a variety of
sensors/switches and individual device controllers in the form of 5 V (TTL*

level) or 24V DC and occasionally 100/120 V or 230/240 V AC. It is expected
that all incoming (low- or high-voltage) signals are isolated through optical
couplers in order to protect the PLC against voltage spikes. The output
signals of the PLC also vary from 5V (TTL level)DC to 230/240VACand are
applied in the reverse order of the input signals. Every I/O point (port) is
assigned a unique address that is utilized for its monitoring via the user
supplied program. For example, Allen-Bradley’s Series 5 PLCs denote
addresses as I or O: two-digit rack number_one-digit module group num-
ber/two-digit port number: I:034/03, I:042/01, O:034/08, O:042/12, and so on.

As mentioned above, PLCs can be configured as single boxes that
house all the logic and I/O units in one casing (with minimal variety on I/O

FIGURE 18 PLC communications.

*Transistor–transistor logic (TTL).
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signals) or as modular structures that allow users to choose from a variety of
I/O modules (analog and discrete signal). The latter configuration is,
naturally, flexible and expandable.

Memory Units

As do PCs, PLCs employ a variety of memory devices for the permanent or
temporary storage of data and operating instructions. However, as with
CPUs, these devices are generally several generations older than their
counterparts in PCs in terms of capacity and speed. Most manufacturer-
provided information, including the operating system of the PLC, is stored
in a read-only memory (ROM) module. All user-provided programs and
collected input data are stored in a random-access memory (RAM)
module—such CMOS-based memory modules are battery supported and
easily erasable and rewritable. Users can also choose to store certain
programs and data on erasable programmable read-only memory (EPROM)
modules for better protection. EPROMs can be completely erased through
external intervention (e.g., using an ultraviolet light input through a window
on the memory device) and reprogrammed for future read-only access cases.
(Electrically erasable EPROMs are often called EEPROMSs.)

Almost all commercial PLCs provide users with a PC-based interface
capability for their programming. Thus PLC programs can be developed on
a host PC, stored on its hard drive, and downloaded to the PLC’s RAM
module when needed.

External Data Communications

Modern PLCs allow users to network their controllers for data communi-
cations between multiple PLCs as well as between PLCs and computers or
other controllers on a factory floor. PLCs can be placed on local area net-
works (LANs) utilizing proprietary software/hardware (e.g., Allen-Bradley’s
Data Highway, Mitsubishi’s Melsec-NET, and General Electric’s Net Fac-
tory LAN) or Ethernet (nonproprietary network protocol and interface
developed by Xerox, DEC, and Intel) (Fig. 19).

PLCs can also communicate between themselves and with other
devices using serial communication interfaces. RS232 (also known as EIA
232) is the most commonly used serial interface standard, it uses a 25-pin
connector—F12 V signals indicate 0/1. Data transfer rates of up to 25
kilobaud (but typically only 9600 baud) can be achieved over short distances
(less than 50 feet, 15 meters). The majority of PLCs also provide users with
RS422 serial interface capability. RS422 can yield a transmission rate of up
to 10 megabaud over a distance of up to 4,000 feet (1,200 meters). Other
standards include the RS485 and the 20 mA current loops.
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15.3.2 PLC Programming

Ladder logic (LL) programming of PLCs is the current industrial standard,
though instruction sets vary from one PLC make to another. LL program-
ming is based on the logical representation of output decisions based on
binary (0/1) values of the inputs. LL programs can be represented in a
ladder diagram form or simply as sets of instructions. A rung typically is a
combination of inputs that affect one output, though some commercial
systems allow a rung to have multiple outputs.

Common logic gates (e.g., AND, OR, NOR) are utilized in the LL
programming of PLCs. Fig. 20 illustrates typical logic symbols used in
LL diagrams, while Table 1 lists some instructions used by commercial
PLC manufactures.

A series of typical rungs are shown in Fig. 21. The first two correspond
to examining multiple inputs and energizing the corresponding outputs,
while the third illustrates a multiple output case.

FIGURE 20 Ladder logic symbols.

FIGURE 19 Networked PLCs.
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As discussed above, a LL program loaded to the PLC’s RAM
module runs in an endless loop. During each scan cycle, the processor
sequentially examines (reads) all the inputs and accordingly energizes or
deenergizes the corresponding outputs. For example, in the third rung of
Fig. 21, the output port with the address O001 is energized only if the PLC
detects an ‘‘ON’’ (1) signal at input port address I003, while O002 is
energized only if additionally the input port address I008 does not have an
‘‘ON’’ (1) value.

Timer and counter instructions, as they affect the outputs of a PLC,
can also be programmed using LL. Timer instructions can be used to delay
the activation of the output port, to deenergize it after a certain period of
time and so on. Counters can perform similar tasks as timers by counting
(up or down) the instances of signals generated to energize the output

TABLE 1 Ladder Logic Instructions

Action Mitsubishi Omron
Texas

Instruments

Start a new rung LD LD STR
Logical AND AND AND AND
Logical OR OR OR OR
Logical NOT NOT NOT I
Output OUT OUT OUT

FIGURE 21 Example ladder logic rungs.
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port. Simple arithmetic functions (add, subtract, multiply, divide, square
root, negate) can also be programmed using LL for data comparison
instructions (e.g., equal, greater than or equal). Most PLCs also allow the
creation and use of subroutines/procedures (external subprograms) within
main programs.

The majority of PLC manufacturers today provide customers with
interface software that runs on PCs for the writing of LL programs and their
easy downloading to the PLCs. Although they differ in their graphical user
interface capability, most software modules are very similar in aiding the
programmer for syntax error detection and so on. One must realize, how-
ever, that having such an off-line programming tool does not guarantee the
correct operation of the manufacturing system, for human errors in pro-
gramming are normally detected only once the system is running and rarely
ahead of time (i.e., off-line).

During the 1990s, two themes of research and development have been
pursued by the industrial and academic communities. The former group
have made some efforts in allowing users to program PLCs via high-level
languages, while the academic community primarily concentrated on the
automatic translation of supervisory controllers, developed via PN or
automata tools, into LL programs.

The sequential function chart (SFC), made available to users by a
number of major PLC manufacturers, is the most commonly used high-
level language alternative to LL. This graphical sequencing language is
defined within the IEC* 1131–3 standard and is derived from IEC 848
GRAFCET—a technique based on PN modeling of DESs.

The first revision of the IEC 1131-3 standard was published in 1993 for
PLC programming that specifies the syntax, semantics, and display for
several languages: LL, SFC, function block diagram (FBD), structured text
(ST), and instruction list (IL). A PLC program can be built with any of these
languages. Typically, such a program would consist of a network of
functions and function blocks that are capable of exchanging data.

In particular, the SFC consists of steps linked with action blocks and
transitions. Each step represents a particular state of the system that is
being controlled. A transition causes the system to change states (steps).
Steps are linked to action blocks that perform certain control actions. Steps
and transitions can be arranged in series or in parallel (Fig. 22). Parallelism
and other features of SFC allow the scanning of only the active states
(steps) instead of sequential scanning of the entire logic, as is the case with
LL programming.

*International Electrotechnical Commission.
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REVIEW QUESTIONS

1. Define flexible manufacturing workcell (FMC) and discuss its auto-
nomous supervisory control.

2. What is discrete event system (DES) control and how does it differ
from time-driven control? Discuss determinism versus nondeterminism
in the state transition of DES systems.

3. What is automata theory?
4. Define (artificial) language in the context of automata theory.
5. What is a finite-state automaton?
6. Define Moore (finite-state) machines versus Mealy machines.
7. What is the primary feature of Ramadge–Wonham (R–W) auto-

mata theory that makes it suitable to the supervisory control of
manufacturing systems?

8. How do you obtain a R–W supervisor for an FMC?
9. What is a Petri net (PN) and how can it be utilized for the DES

modeling of FMCs?
10. How is a transition enabled in PNs? What is the consequence of a

fired transition?
11. Describe the following properties of PNs in terms of the control of

FMCs: reachability, boundedness, and liveness. Furthermore, define a
deadlock state.

12. How do you synthesize a PN supervisor for an FMC and how would
you implement it?

13. What is a programmable logic controller (PLC) and how would it
control an FMC?

FIGURE 22 Sequential function chart programming.
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14. Discuss the primary elements of a PLC and compare its architecture to
that of a personal computer (PC). Furthermore, discuss PLC com-
munications over an Ethernet-based network.

15. Discuss the programming of PLCs using ladder logic and other higher
level programming languages.

16. How could one use automata or Petri net theory in the automatic
generation of PLC programs versus their compilation manually by an
experienced operator?

DISCUSSION QUESTIONS

1. Computers and other information management technologies have been
commonly accepted as facilitators for the integration of various
manufacturing activities. Define/discuss integrated manufacturing in
the modern manufacturing enterprise and address the role of
computers in this respect. Furthermore, discuss the use of intranets
and extranets as they pertain to the linking of suppliers, manufacturers,
and customers.

2. Manufacturing flexibility can be achieved on three levels: operational
flexibility, tactical flexibility, and strategic flexibility. Discuss opera-
tional flexibility. Is automation a necessary or a desirable tool in
achieving this level of flexibility?

3. The factory of the future will be a totally networked enterprise.
Information management in this enterprise will be a complex issue. In
regards to planning, monitoring, and control, discuss the level of
detail of information that the controllers (humans or computers)
would have to deal with in such environments. For example, some
argue that in a hierarchical information management environment,
activities are more of the planning type at the higher levels of the
hierarchy and of the control type at the lower levels. It has also been
argued that the level of details significantly decreases as you ascend
the enterprise ladder.

4. Job shops that produce one-of-a-kind products have been considered
the most difficult environments to automate, where a product can be
manufactured within a few minutes or may require several days of
fabrication. Discuss the role of computers in facilitating the trans-
formation of such manual, skilled-labor-dependent environments to
intensive automation-based environments.

5. Several fabrication/assembly machines can be physically or virtually
brought together to yield a manufacturing workcell for the production
of a family of parts. Discuss the advantages of adopting a cellular
manufacturing strategy in contrast to having a departmentalized
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strategy, i.e., having a turning department, a milling department, a
grinding department, and so on. Among others, an important issue to
consider is the supervisory control of such workcells.

6. In the factory of the future, it is envisioned that production and
assembly workcells will be frequently reconfigured based on the latest
manufacturing objectives without the actual physical relocation of
their machines/resources. Discuss the supervisory control options that
should be available to the users of such workcells, whose boundaries
may exist only in the (computer’s) virtual space.

7. The primary advantage of PLCs has been their robust modular de-
sign that allows large numbers of inputs and outputs to be directly
connected to the controller. However, this advantage has also been
discouraging users from implementing PLCs widely in flexible manu-
facturing workcells, who frequently opt for networkable industrial
PCs. Compare PCs versus PLCs for the control of manufacturing sys-
tems that are configured for mass production versus those that are
configured (and occasionally reconfigured) for small batch production.

8. In the factory of the future, it is expected that manufacturing work-
cells will operate autonomously under the control of an overall
computer-based supervisor; all devices, including fixtures and jigs, will
be equipped with their own (device) controllers that can effectively
communicate with the workcell supervisor. Discuss difficulties in the
integration and utilization of a large number of sensors and other
communication components in remotely controlled (via two-way
communications) FMCs.

9. Computer-based controllers (PC or PLC based) have been advocated
as better supervisors than human controllers based on a number of
factors including reaction time. Besides manufacturing environments,
such controllers have been widely used in the health care, nuclear,
aviation, security, and military industries. Discuss the advantages/
disadvantages of using computer-based controllers in today’s manu-
facturing industries. You may also extrapolate and discuss the role of
such controllers in the factories of the future.

10. Discrete event system (DES)-based autonomous supervisory control
of flexible manufacturing workcells require the planning of a new
(software-based) controller, the reprogramming of the control hard-
ware using this controller, and, frequently, rewiring of the commu-
nication lines between the control hardware and the input/output
devices in the workcell every time the workcell is reconfigured to
manufacture different products. All these three problematic issues
and others discourage manufacturers from implementing computer-
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based autonomous DES controllers. The manufacturers mostly
continue to rely on limited feedback received from the workcell
that is monitored by a human supervisor. Discuss remedies to these
problems that would allow widespread use of autonomous computer-
based supervisors.

11. Manufacturing systems, supported by computers, can be classified as
manual versus automated and flexible (reconfigurable, reprogram-
mable, etc.) versus rigid. Discuss these classifications and elaborate on
the intersections of their domains (e.g., manual and flexible, etc.). Note
that each classification may have sublevels and subclassifications (i.e.,
different ‘‘levels of gray’’).

12. In the factory of the future, no unexpected machine breakdowns will
be experienced! Such an environment, however, can only be achieved
if a preventive maintenance program is implemented, in which all
machines and tools are modeled (mathematically and/or using heu-
ristics). These models would allow manufacturers to schedule main-
tenance operations as needed. Discuss the feasibility of implementing
factory-wide preventive maintenance programs in the absence of our
ability to model completely all existing physical phenomena and fur-
thermore in the lack of a large variety of sensors that can monitor
the states of these machines and provide timely feedback to such
models.

13. Human factors (HF) studies encompass a range of issues spanning
from ergonomics to human–machine (including human–software)
interfaces. Discuss the role of HF in the autonomous factory of the
future, where the impact of human operators is significantly diminished
and emphasis is switched from operating machines to supervision,
planning, and maintenance.
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